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e Departamento de F́ısica de Materiales, Facultad de Ciencias Qúımicas, UPV/EHU, Centro Mixto
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Abstract

We report on the background, current status, and current lines of development of the octopus

project. This program materializes the main equations of density-functional theory in the ground

state, and of time-dependent density-functional theory for dynamical effects. The focus is nowadays

placed on the optical (i.e. electronic) linear response properties of nanostructures and biomolecules,

and on the non-linear response to high-intensity fields of finite systems, with particular attention to the

coupled ionic-electronic motion (i.e. photo-chemical processes). In addition, we are currently extend-

ing the code to the treatment of periodic systems (both to one-dimensional chains, two-dimensional

slabs, or fully periodic solids), magnetic properties (ground state properties and excitations), and

to the field of quantum-mechanical transport or “molecular electronics.” In this communication, we

concentrate on the development of the methodology: we review the essential numerical schemes used

in the code, and report on the most recent implementations, with special attention to the introduction

of adaptive coordinates, to the extension of our real-space technique to tackle periodic systems, and

on large-scale parallelization. More information on the code, as well as the code itself, can be found

at http://www.tddft.org/programs/octopus/.

1 Introduction

Both density-functional theory (DFT) [1, 2], and time-dependent density-functional theory (TDDFT) [3,

4] have enjoyed a steady increase of their popularity ever since they were born, in the sixties and eighties

respectively. The reason is that both theories achieve, for many problems, an unparalleled balance

between accuracy and computational cost. Although the scope of applicability of traditional Quantum

Chemistry techniques, or of Quantum Monte-Carlo procedures, have also increased in recent years [5, 6],

DFT/TDDFT is still the method of choice for large systems (e.g., molecular systems of biological interest)

undergoing complex processes.

Correspondingly, numerous software packages that solve DFT/TDDFT equations are available [7]. Among

them, octopus [8] is one with special focus on TDDFT. In the present newsletter, we describe the cur-
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rent status of this project, and the aims of its developing process. In brief, some of the key aspects that

describe octopus are:

Target problems:

(i) Linear optical (i.e. electronic) response of molecules or clusters.

(ii) Non-linear response to classical high-intensity electromagnetic fields, taking into account both

the ionic and electronic degrees of freedom.

(iii) Ground-state and excited state electronic properties of systems with lower dimensionality, such

as quantum dots.

(iv) Photo-induced reactions of molecules (e.g., photo-dissociation, photo-isomerization, etc).

(v) In the immediate future, extension of these procedures to systems that are infinite and periodic

in one or more dimensions (polymers, slabs, nanotubes, solids), and to electronic transport.

Theoretical base:

(i) The underlying theories are DFT and TDDFT. Also, the code may perform dynamics by

considering the classical (i.e. point-particle) approximation for the nuclei. These dynamics

may be non-adiabatic, since the system evolves following the Ehrenfest path. It is, however, a

mean-field approach.

(ii) Regarding TDDFT, we have implemented two different approaches: On the one hand, the

“standard” TDDFT-based linear-response theory, which provides us with excitation energies

and oscillator strengths for ground-state to excited-state transitions. On the other hand, we

have also implemented the explicit time-propagation of the TDDFT equations, which allows

for the use of large external potentials, well beyond the range of validity of perturbation theory.

Methodology

(i) As numerical representation, we have chosen to work without a basis set, relying on numer-

ical meshes. Nevertheless, auxiliary basis sets (plane waves, atomic orbitals) are used when

necessary.

Recently, we have added the possibility of working with non-uniform grids, which adapt to

the inhomogeneity of the problem, and of making use of multigrid techniques to accelerate

the calculations. The adaptive coordinates implementation will be discussed in some detail in

Section 4.

(ii) For most calculations, the code relies on the use of pseudopotentials [9]. We currently allow

for two types: Troullier-Martins [10], and Hartwigsen-Goedecker-Hutter [11].

(iii) In addition to being able to treat systems in the standard 3 dimensions, 2D and 1D modes

are also available. These are useful for studying, e.g., the two-dimensional electron gas that

characterizes a wide class of quantum dots.

Technical aspects

(i) The code has been designed with emphasis on parallel scalability. In consequence, it allows

for multiple task divisions. We will comment on this aspect in Section 5.

(ii) The language of most of the code is Fortran 90 (almost 50.000 lines at present). Other

languages, such as C or Perl, are also used.

(iii) We have struggled to employ only standard and portable tools. The resulting code may run

on virtually any Unix-like platform.
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(iv) The package is licensed under the GNU General Public License (GPL). In consequence, it is

available for use, inspection, and modification for anyone, at http://www.tddft.programs/

octopus/.

Section 2 summarizes the algorithms used for ground-state calculations, while the next section handles

response properties. Sections 4, 5 and 6 report some of the recent additions to the package: adaptive

coordinates to numerically represent the problem, support for parallel calculations (a lot of effort is being

put onto the scalability of the computations to large number of processors), and the treatment of periodic

systems.

2 Ground-state DFT calculations

2.1 The Kohn-Sham equations

Kohn-Sham (KS) DFT [1, 2] provides the ground state one-particle density n0 of a system of N electrons

exposed to an external potential v(~r), by identifying it with the density of a non-interacting system of

electrons subject to the so-called KS potential, vKS(~r). This system, being non-interacting, may be solved

through a set of one-particle equations, the KS equations [1] (atomic units will be used throughout):

hKS ϕi(~r) = εiϕi(~r) (i = 1, . . . , N) , (1)

n0(~r) =

N
∑

i=1

|ϕi(~r)|2 . (2)

The functions ϕi and the real numbers εi are the KS orbitals and KS eigenvalues, respectively. The KS

state is the single Slater determinant built from those orbitals. The KS Hamiltonian is given by

hKS[n] = −1

2
∇2 + vKS(~r) . (3)

The first term, the kinetic operator, is approximated in a real-space formulation by a finite difference

formula – details about this will be given in Section 4. The KS potential is usually separated as follows:

vKS(~r) = v(~r) + vHartree[n](~r) + vxc[n](~r) . (4)

External potential. The external potential v(~r) is typically the sum of the Coulomb potential gen-

erated by each of the nuclei. In a pseudopotential formulation, this includes both local and non-local

components. For an atom α positioned at ~Rα, the pseudopotential v̂α(~Rα) is the sum of a local operator

vlocal
α and a set of non-local projectors described by atom-centered functions ξκ

α:

〈~r|v̂α(~Rα)|ϕ〉 = vlocal
α (~r − ~Rα)ϕ(~r) +

∑

κ

〈ξκ
α(~Rα)|ϕ〉ξκ

α(~r − ~Rα) . (5)

Note that these projectors are typically well localized in real space, so their action is computationally

feasible and faster than in a plane wave formulation.

The code also allows for other “user-defined” external potentials. For example, one can attempt to model

the solvent environment of a given system with the electrostatic potential generated by a set of point

charges and/or dipoles (e.g. to model a chromophore in its protein environment [12]). This is the basic

principle of the so-called QM/MM techniques [13]. Also, the user may define a model potential describing

a two-dimensional quantum dot, and can specify it simply by writing down its mathematical function in

the input file.

Hartree potential. The second term of (4), vHartree[n](~r) is more time-consuming. There are various

ways of obtaining this potential numerically, and we have investigated and implemented some of them [14].

These are explained in more detail in Section 2.2.
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Exchange-correlation potential. The exchange-correlation (xc) potential, vxc[n0], is an unknown

functional of the density, and has to be approximated. It is the first functional derivative of the exchange-

correlation energy functional:

vxc[n](~r) =
δExc

δn(~r)
. (6)

We have incorporated in octopus a wide variety of possible functionals, ranging from the standard local

density approximation (LDA)[15] and generalized gradient approximations [16], to the state-of-the-art

orbital-dependent functionals [17, 18, 19]. “Traditional” LDAs and GGAs are easy, since they are explicit

functionals of the density and its gradient. The more recent orbital-dependent functionals, however, are

explicit functionals of the KS orbitals (and so they are implicit functionals of the density through the

orbitals) and require the use of the optimized effective potential method (OEP) [17, 18]. We have

implemented these functionals in octopus. Both the Krieger, Li and Iafrate (KLI) [19] approximation

and the full solution of the OEP equation [20] (still in experimental phase) are available.

We are now extending the set of functionals to cope with current-density functionals [21]. At this point,

we emphasize that along with the octopus distribution we provide a standard “exchange and correlation

library,” written in C. All (TD)DFT codes require an equivalent piece of software, and in our opinion, it

would be mutually beneficial to share an open, reliable library. We expect that this may be a first step

towards this goal.

Eigensolvers. Once we know how to construct the real-space representation of the Hamiltonian for a

“trial” density n (or, in fact, for a trial set of KS orbitals ϕi from which the density is generated), we

are faced with the problem of solving the Kohn-Sham equations (1) for the N lowest lying eigenpairs of

this Hamiltonian operator. In real space this amounts to the solution of an eigenproblem for large sparse

matrices. The literature in this field is abundant [22], and we have tried several schemes in octopus.

The following are available in the current version of the code: conjugate-gradients based schemes [23],

Lanczos-based algorithms [24] and the Jacobi-Davidson procedure [25].

Mixing. We are left with the mixing of the density, which is essential for the convergence of the self-

consistent procedure. For that purpose, we employ some standard techniques. Essentially, one has to

build recursively a series of densities n(i) that converges to the solution density n0. Each new density is

generated through a prescription of the form:

n(i+1) = G[ñ(i+1), n(i), n(i−1), . . . , n(i−s)] , (7)

where ñ(i+1) is the density obtained from Eq. (2) using the Kohn-Sham orbitals of step i+1. The simplest

example of such a prescription is the so-called “linear mixing” [26], for which Eq. (7) takes the form:

n(i+1) = (1−α)ñ(i+1) +αn(i) . However, octopus allows for more sophisticated procedures – we refer the

reader to the original references: the generalized Broyden algorithm of Johnson [27], and the “guaranteed

reduction” Pulay algorithm [28].

Spin. All the previous equations were written considering no spin polarization. However, octopus is also

able to perform calculations using spin-density functional theory, either considering complete spin align-

ment throughout the system or not. This latter case requires the use of the generalized local spin-density

theory [29]. The wave functions are then described as two-component spinors Φ(~r) = (ϕ1(~r), ϕ2(~r)) where

the components are complex wave functions.

Finally we also mention the possibility to perform calculations including external magnetic fields. As

noted above, current-density functionals are being implemented, but it is already possible to perform

calculations including a static uniform magnetic field.
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2.2 The Hartree potential

In 3 dimensions, the Hartree potential may be represented in two equivalent forms: as the integral:

vHartree[n](~r) =

∫

d3r′
n(~r′)

|~r − ~r′| , (8)

or as the solution of Poisson’s equation:

∇2vHartree[n](~r) = −4πn(~r) . (9)

There are various ways in which these equations may be solved, and we have investigated and implemented

some of them [14].

Conjugate gradients. This amounts to solving Eq. (9) via a conjugate gradients algorithm. This

poses the problem of the boundary conditions for v. The standard solution is to obtain the boundary

conditions by calculating the value of v at points around the simulation box by making use of a multipole

expansion representation of the density n: For points outside, the potential is given by

vHartree(~r) =
∞
∑

l=0

l
∑

m=−l

4π

2l + 1

1

r(l+1)
Ylm(r̂)Qlm , (10)

Qlm =

∫

d3r rlYlm(~r)n(~r) ,

where Ylm are spherical harmonics. octopus now offers an alternative: we subtract from n a sum

of densities Qlmnlm, where Qlm are the multipoles of n, and where nlm are auxiliary known charge

distributions whose (lm)-moment is unity, and whose other moments are zero:

n̄ = n −
L

∑

l=0

l
∑

m=−l

Qlmnlm . (11)

For a sufficiently large integer L, n̄ has negligible boundary conditions, so that vHartree[n̄] may be calcu-

lated with the usual Laplacian with zero boundary conditions. Since Poisson’s equation is linear,

vHartree[n] = vHartree[n̄] +

L
∑

l=0

l
∑

m=−l

QlmvHartree[nlm] . (12)

The functions vHartree[nlm] can be obtained exactly (see Ref. [14] for explicit analytical expressions for

nlm and vHartree[nlm]).

Multigrids. Still in real-space, as a recent addition, octopus now also allows for the use of the multigrid

method [30, 31]. Multigrid is a linear scaling iterative method to solve elliptic problems. The base of this

scheme is to use a group of different grids that have less points than the original grid where the problem

is discretized. In these coarser grids the corrections to the solution in the original grid are calculated

using standard relaxation methods (such as Gauss-Jacobi or Gauss-Seidel). The solution process is much

faster in the coarser grids, not only because of the reduced number of points, but also because relaxation

operators are less local.

Currently, this technique is implemented in octopus only for the problem of solving Poisson’s equation;

our plans however are to use this technique to accelerate the convergence of our eigensolvers [32, 33].

Fourier space. octopus also allows to move to Fourier space and obtain the Hartree potential by

making use of the well-known fact that it is simply a multiplicative function in Fourier space. This is be
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the best choice for fully periodic systems, since it naturally handles the periodic boundary conditions. It

is a fast and efficient method thanks to the existence of the Fast Fourier Transform (FFT) algorithm.

For systems of reduced periodicity (finite systems, slabs, cylinders) plane waves can still be used efficiently

to calculate the Hartree potential using the cutoff technique. The discussion of this issue is referred to

Section 6.

3 Response calculations

3.1 Time-dependent DFT

TDDFT [3, 4] extends the previous formulation to time-dependent phenomena; one can establish an

analogous mapping between the interacting and a non-interacting system, and we obtain a set of time-

dependent one-particle equations [3] (Runge-Gross equations, or time-dependent KS equations, TDKS):

i
∂

∂t
ϕi(~r, t) = hKS(t) ϕi(~r) (i = 1, . . . , N) . (13)

n(~r, t) =

N
∑

i=1

|ϕi(~r, t)|2 . (14)

The KS Hamiltonian is similar to the static version given by Eq. (3):

hKS(t) = −1

2
∇2 + v(~r, t) + vHartree[n](~r, t) + vxc[n](~r, t) . (15)

Note, however, that in this case we allow for an explicitly time-dependent external potential v(~r, t). The

exchange and correlation term is now both a functional of the time-dependent density and of the initial

state of the system (typically the ground state). In principle, vxc should depend on the densities at all

times in the past; in practice most applications of TDDFT rely on an adiabatic approximation:

vxc[n](~r, t) = vgs
xc[ρ]|ρ=n(~r,t) , (16)

where vgs
xc is the ground state exchange and correlation potential functional. In this way, all the approx-

imations implemented in the code for the ground state calculations translate immediately to the time-

dependent formalism. Moreover, orbital functionals are also implemented in octopus for time-dependent

calculations within the time-dependent KLI scheme [34].

Most applications of TDDFT are restricted to a linearized form of Eqs. (13) and (14) that assumes a

small external perturbation, and attempts to obtain the first-order density-density response in frequency

domain. In octopus we allow for both possibilities: the linear-response formalism, and the explicit

integration of the TDKS equations in the time domain. The latter may not only be used to calculate

linear response properties, but also permits to use high-intensity fields and to perform combined electron-

ion dynamical simulations.

For the explicit integration of Eqn. (13) in real time one uses a propagation algorithm. In other words,

we seek a numerical representation of the evolution operator Û(t + ∆t, t):

ϕ(~r, t + ∆t) = Û(t + ∆t, t)ϕ(~r, t) . (17)

In TDDFT we are dealing with the integration of a set of coupled Schrödinger-like equations, characterized

by two important facts: (i) The Hamiltonian is intrinsically time-dependent, even if there is no external

potential, since the Hartree and xc parts depend on the time-dependent density; (ii) The Hamiltonian –

at least a part of it – is not known a priori: both Hartree and xc terms depend on the solution itself.

For time-independent Hamiltonians, it is well known that the problem reduces to the calculation of the

action of the exponential of the Hamiltonian on the function that describes the state. Unfortunately,
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since this is not the case in TDDFT, one has to approximate the full evolution operator:

Û(t + ∆t, t) =
∞
∑

n=0

(−i)n

n!

∫ t+∆t

t

dt1 . . .

∫ t+∆t

t

dtnT [ĥKS(t1) . . . ĥKS(tn)] , (18)

where T is the time-ordering product. We have done some research on this topic, by implementing

in the octopus package a handful of algorithms: polynomial expansions (in the standard base or in

the Chebyshev base) to approximate the exponential operator, Krylov subspace projections, the split-

operator technique, higher-order split-operator-like schemes, the implicit midpoint rule, the exponential

midpoint rule, and the so-called Magnus expansions.

For more details on these propagation algorithms, we refer the reader to our publication on the issue [35].

3.2 Electronic excitations by means of time-propagation

Dynamical polarizability. In octopus the calculation of the dynamical polarizability can be per-

formed by propagating in real time [36]. This methodology scales well with the size of the system, and

is thus our preferred scheme for large systems. Let us recall the essentials of this formulation. We will

restrict hereafter to electrical (spin-independent) dipole perturbations:

δvext,σ(~r, ω) = −xjκ(ω) . (19)

This defines an electrical perturbation polarized in the direction j: δ ~E(ω) = κ(ω)êj . The response of the

system dipole moment in the i direction

δ〈X̂i〉(ω) =
∑

σ

∫

d3r xi δnσ(~r, ω) (20)

is then given by:

δ〈X̂i〉(ω) = −κ(ω)
∑

σσ′

∫

d3r

∫

d3r′ xi χσσ′(~r, ~r′, ω) x′
j . (21)

We may define the dynamical dipole polarizability αij(ω) as the quotient of the induced dipole moment

in the direction i with the applied external electrical field in the direction j, which yields:

αij(ω) = −
∑

σσ′

∫

d3r

∫

d3r′ xi χσσ′(~r, ~r′, ω) x′
j . (22)

The dynamical polarizability elements may then be arranged to form a second-rank symmetric tensor,

α(ω). The cross-section tensor is proportional to its imaginary part:

σ(ω) =
4πω

c
=α(ω) . (23)

We consider a sudden external perturbation at t = 0 (delta function in time), which means κ(ω) =

κ, equal for all frequencies. This perturbation is applied along a given polarization direction, say êj .

By propagating the time-dependent Kohn-Sham equations, we obtain δ〈X̂i〉(ω) through Eq. (20). The

polarizability element αij(ω) may then be calculated easily via:

αij(ω) = −δ〈X̂i〉(ω)

κ
= − 1

κ

∫

d3r xi δn(~r, ω). (24)

Symmetry considerations. One recent addition to octopus [37] is the possibility of taking advantage

of the possible symmetries of a given molecule when calculating its dynamical polarizability tensor,

Eq. (22), through the time-propagation technique.
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Let us consider three linearly-independent, but possibly not non-orthogonal, unit vectors {p̂1, p̂2, p̂3}. We

define the polarizability elements α̃ij(ω) as:

α̃ij(ω) = −
∫

d3r

∫

d3r′ (~r · p̂i)χ(~r, ~r′, ω)(~r′ · p̂j) . (25)

This corresponds to a process in which the polarization of the perturbing field is along p̂j , and the dipole

is measured along p̂i. If we know the 3x3 matrix α̃(ω), we can get the real tensor α(ω) by making use of

the following simple relationship, which can be obtained once again from Eq. (22):

α̃(ω) = Pt
α(ω)P . (26)

P is the transformation matrix between the original orthonormal reference frame and {p̂1, p̂2, p̂3}. Note,

that this transformation is in general not a rotation, as P is not unitary. Moreover, no matter how

familiar it looks, Eq. (26) does not describe a change of coordinates: α̃(ω) is not the polarizability tensor

in the new reference frame. And finally, also note that the traces of α̃ and α do not coincide:

Tr [α̃(ω)] = Tr
[

Pt
α(ω)P

]

= Tr
[

α(ω)PPt
]

. (27)

but PPt 6= 1. Notwithstanding all this, it is the basis of our scheme, since it tells us that we may obtain

the polarizability tensor by obtaining the related object α̃(ω).

Now let us assume that the molecule under study possesses some non-trivial symmetry transformations

– to start with, we consider that it has two, A and B. We consider an initial unit vector, p̂1, and define:

p̂2 = Ap̂1 (28)

p̂3 = Bp̂2

We assume that this may be done in such a way that the set {p̂1, p̂2, p̂3} is linearly independent. Next, we

perform a TDDFT calculation with the perturbing field polarized in the direction p̂1. This permits us to

obtain the row {α̃11, α̃12, α̃13}. Since the matrix is symmetric, we also have the column {α̃11, α̃21, α̃31}.
The symmetry of the molecule also permits us to obtain the diagonal: {α̃33 = α̃22 = α̃11}. The only

missing element is α̃23 = α̃32, but it is easy to prove that:

α̃23 = det(A) α̃1,A−1p̂3
, (29)

which we can also obtain from our original calculation. The conclusion is that we have access to the full

tensor by performing only one calculation.

Finally, we should note that these symmetry considerations may be extended to other response properties

of the system, and to the calculation of the singlet and triplet excitations of paramagnetic molecules.

3.3 Electronic excitations by means of linear-response theory

We recall here the fundamental equations of the linear response formalism [38]. In the following, we work

directly in the frequency domain – the variable ω denotes the frequency. A small perturbation δvσ(~r, ω)

will induce a density response δnσ(~r, ω) (hereafter the Greek letters σ, τ, µ will denote spin components).

They will be linearly related by the susceptibility function:

δnσ(~r, ω) =
∑

σ′

∫

d3r′χσσ′(~r, ~r′, ω)δvσ′(~r′, ω) . (30)

An analogous equation may be written for the KS system, substituting the interacting susceptibility by

the KS susceptibility χKS
σσ′ and the external perturbation δvσ by the KS variation δvKS,σ. The density

response, however, is identical by virtue of the Runge-Gross theorem [3]. The KS variation is:

δvKS,σ(~r) = δv(~r) +

∫

d3r′
δn(~r′)

|~r − ~r′| +
∑

σ′

∫

d3r′fxc,σσ′(~r, ~r′, ω)δnσ′(~r′, ω) , (31)
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where the so-called “kernel”, fxc,σσ′(~r, ~r′, ω), is the second functional derivative of the xc energy func-

tional. If we now make use of the identity between densities of the real and of the KS systems, we arrive

at a Dyson-like equation for the response function [39]:

χσσ′(~r, ~r′, ω) = χKS
σσ′(~r, ~r′, ω) +

∑

ττ ′

∫

d3r

∫

d3r′χστ (~r, ~x, ω)

[

1

|~x − ~x′| + fxc,ττ ′(~x, ~x′, ω)

]

χKS
τ ′σ′(~x′, ~r′, ω) .

(32)

A fully self-consistent solution of this equation would provide us with the response function of the inter-

acting system. Unfortunately, this is quite difficult numerically. Furthermore, it requires the knowledge

of the non-interacting response function, χKS
σσ′ . This function is usually evaluated through an infinite

summation over both occupied and unoccupied KS states. This summation may be slowly convergent.

For systems with a discrete spectrum of excitations (like finite systems), it is possible to recast this equa-

tion through a series of transformations [38] into a form that is manageable and resembles the equations

that are obtained in the time-dependent Hartree-Fock and Bethe-Salpeter approaches in many-body per-

turbation theory [42]. We write here only the final result – which is the equation that octopus actually

solves:

Ω~FI = Ω2
I
~FI . (33)

This is an eigenvalue equation of dimension Npairs, where Npairs is the number of pairs of occupied and

unoccupied KS orbitals that one wishes to consider (ideally infinite). The matrix Ω is defined as:

Ωiaσ,jbµ = δijδabδσµ(εaσ − εiσ)2 + 2
√

εaσ − εiσKiaσ,jbµ

√

εbσ − εjµ , (34)

with the matrix elements

Kiaσ,jbµ =

∫

d3r

∫

d3r′ ϕ∗
iσ(~r)ϕaσ(~r)

[

1

|~r − ~r′| + fxc,σµ(~r, ~r′)

]

ϕ∗
jµ(~r)ϕbµ(~r) . (35)

Here i and j run over occupied KS states, a and b over unoccupied KS states, and σ and µ are spin

indexes. Upon diagonalization of this matrix, we obtain the eigenvalues Ω2
I , which are the squares of

the excitation energies of the system. The eigenvectors, in turn, contain the information that permits to

obtain the transition densities and the oscillator strengths of these excitations.

We should remark, however, that Eq. (33) assumes that the Ω matrix is independent of the excitation

energy. This is an approximation: For exchange-correlation potentials with memory (e.g. Ref. [40]),

one has to solve self-consistently a non-linear eigenvalue problem: Ω(ΩI)~FI = Ω2
I
~FI , whose manifold of

solutions is usually larger than the approximated one.

In order to implement the TDDFT-based linear-response equations – essentially, Eq. (33) –, one just

needs to provide a means to calculate the Ω matrix elements in Eq. (34). The only new difficulty is the

appearance of a new ingredient, the kernel fxc(~r, ~r
′). Note that this is a two-point function, although it

reduces to a one-point function in local approximations to the exchange and correlation energy functionals.

3.4 High-intensity fields

Now, a word about calculations in the non-linear regime (i.e. when applying large external electromagnetic

fields, or when studying the scattering of a high energy projectile by a molecule). One external field is

added to the “internal” KS potential; In such cases the external potential takes typically the form:

v(~r, t) = E0f(t) sin(ωt)p̂ · ~r . (36)

This ansatz describes a classical laser pulse in the dipole approximation, where f is the “envelope” of the

pulse and p̂ is the polarization of the light. Finally, E0 determines the intensity of the pulse. Of course

there is no problem to extend this ansatz in order to describe more general situations.
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When dealing with high-intensity fields, there will be a non-negligible transition probability to unbound

states. In other words, the incoming field may induce the ionization of part of the electronic cloud. The

observables related to this process are the ionization probabilities, which are functionals of the time-

dependent density by virtue of the Runge-Gross theorem. Unfortunately, these functionals are unknown.

There is not a fully satisfactory way to deal with this issue within a grid-based formalism, but there are

some approximate methods that rely on a geometrical picture [41]: we define a bound region A around

the system that contains the bound states, and the density that travels outside (to the rest of the space,

B) corresponds to ionized states.

In practice, there are two schemes to simulate this ionization in octopus. The first consists of adding an

imaginary potential to the Hamiltonian, which is defined to be non-zero only in a frontier region F that

separates A and B. It varies smoothly from zero in the intersection of F and A to a maximum in the

limit of the simulation region. The role of this imaginary potential is to eliminate in a smooth way the

electronic density that approaches the frontier of the simulation region. The second uses a mask function

to selectively remove the density close to the borders.

A classical example for the application of TDDFT within the high-intensity field regime is the calculation

of the High-Harmonic Generation (HHG) spectrum of a molecule: If we shine a very intense laser field

(of intensity over 1013W/cm2) on a molecule, an electron may absorb several photons, be ejected, and

then return emitting one single photon. This photon has a frequency which is an integer multiple of

the frequency of the external driving field. The spectrum of emitted radiation is approximately (i.e.

neglecting incoherent processes) given by:

σemission(ω) =

∣

∣

∣

∣

∫

dte−iωt d2

dt2
〈 ~̂R〉

∣

∣

∣

∣

2

. (37)

Since the dipole 〈 ~̂R〉 is an explicit functional of the time dependent density, the emission spectrum can

then be approximated with TDDFT. A couple of examples may be found in Ref. [43].

3.5 Coupled ion-electron response

In order to study the dynamics of molecules exposed to external fields, we have implemented a mixed

classical/quantum approach. The Hellman-Feynman theorem is no longer valid in this case, but we may

resort to the Ehrenfest theorem; the model may be described as two coupled dynamical systems: one

quantum system of non-interacting particles (the KS/TDDFT system of electrons) subject to the KS

potential, and one classical system of particles describing the ions. The first system obeys Eqs. (13) and

(14); the second system is described by Newton’s equations:

mα

d~Rα

dt
= ~Pα , (38)

d~Pα

dt
= −

∑

j

〈ϕj(t)|~∇~Rα

vKS[n]|ϕj(t)〉 +
∑

β 6=α

~Fβ→α . (39)

In these equations, mα is the mass of the nucleus tagged by α; ~Rα and ~Pα are their position and

momentum; ~Fβ→α is the classical electrostatic force exerted by nucleus β on nucleus α. Eq. (39) is

nothing else than a reformulation of Ehrenfest’s theorem.

3.6 Sternheimer’s equations

One recent addition to octopus is the possibility of calculating response properties using density-functional

perturbation theory [44, 45, 46]. Currently it is possible to calculate static polarizabilities and the first

hyperpolarizabilities,
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→ ~r → ~ξ(~r) →

Figure 1: An adaptive-coordinates representation is constructed through the definition of a coordinate transfor-

mation function ~ξ.

The base of this theory is that, for a given perturbative potential, we can find the first order perturbations

to the wavefunctions (ϕ
(1)
i ) solving the Sternheimer [47] equation

(

H(0) − ε(0)
)

ϕ
(1)
i = −

(

H(1) − ε(1)
)

ϕ
(0)
i , (40)

the H(1) term includes the perturbative potential and the variation of the Hamiltonian due to the variation

of the density, which is

n(1) (~r) =

N
∑

i=0

[

ϕ
∗(0)
i (~r) ϕ

(1)
i (~r) + ϕ

∗(1)
i (~r) ϕ

(0)
i (~r)

]

. (41)

The two equations (40) and (41) form a system that must be solved self-consistently. As the right hand

side of (40) is known, this is a linear equation that can be solved by iterative methods.

Thanks to the 2n + 1 theorem [48], using the first order perturbations of the wavefunctions, we are able

to calculate properties that are second and third-order derivatives of the total energy (polarizability and

the first hyperpolarizability, for instance).

This formalism is also applicable to time dependent perturbations, using TDDFT [49], where we have to

solve a slightly different Sternheimer equation

(

H(0) − ε(0) ± ω
)

|ϕ(1)
i 〉 = −H(1)|ϕ(0)

i 〉 , (42)

where ω is the frequency of the perturbative potential. We are now developing this scheme to calculate

dynamical polarizabilities.

4 Adaptive coordinates

The real-space techniques for computational simulations in the condensed matter realm are usually praised

for, at least, two strong advantages: On the first hand, the intrinsically local character of the “basis set”

permits, in principle, large scale parallelization by dividing the space in domains. This locality is also the

basis for the use of techniques aiming at the linear-scaling of the computational effort. On the second

hand, the real space mesh on which the magnitudes are represented may be locally adapted to the needs of

each region – one feature which is difficult to translate to the more traditional plane wave representation.

This section is centered on the second aspect: One possible route to implement curvilinear coordinates,

able to adapt the local resolution to the needs of each region in space. The next section will be dedicated

to the parallelization.

A real-space representation is the description of the functions involved in the calculation by the values

that these functions take on a collection of points in real space (the “grid” or “mesh”). This grid can be

regular – meaning that the points are equispaced between each other – or curvilinear. An “adaptive” or

“curvilinear” grid is the deformation of a regular grid through some transformation function (see Fig. 1),

which leads to a curved distribution of points. This deformation should be intelligently done, so that the

density of points increases in the regions of space where the problem requires a larger resolution.
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Figure 2: Left: the “basic” porphyrin molecule. Right: convergence study of the ground-state total energy of

the porphyrin molecule, with and without the use of the adaptive-grid technique. In this case, we have used

the transformation formula of F. Gygi [50], doubling the local cut-off near the atoms, and a 44-point stencil to

represent the Laplacian operator.

In the last years, a number of groups have contributed to the development of these techniques in the field of

electronic structure calculations. We have specially looked at the works of F. Gygi and collaborators [50],

Hamann [51], Pérez-Jordá [52], Briggs and collaborators [53], E. Fattal and collaborators [54] and at the

work of Waghmare and collaborators [55]. In octopus we have implemented one scheme based on the

ideas of these works.

An example of curvilinear coordinates is based on the following transformation function, first proposed

by Gygi [50]

ξi = xi +
∑

α

(xi − Ri
α)fα(|~x − ~Rα|), (43)

fα(r) = Aα

aα

r
tanh

(

r

aα

)

exp

[

−
(

r

bα

)2
]

, (44)

where α runs over the atoms, and ~Rα are the atomic positions. The parameters Aα, aα, and bα fine-tune

the transformation – what will be the resolution enhancement, the region around each atom where the

regular grid is transformed, etc.

Once that the positions of the grid points are specified, we represent each function involved in the

calculation (f , g,. . . ) by the vector formed by the values that it takes on the grid points (f ,g, . . . ). We

must then define the basic operations:

• The basic vector space operations are of course unaltered: αf + βg → αf + βg.

• The integration is now a weighted sum; each grid point i has a weight ωi, which is in fact the

Jacobian of the transformations:
∫

d3r f(~r) =
∑

i

ωifi , (45)

wi = det

[

∂xi
m

∂rn

]

. (46)

• The integral permits to define the dot product:

〈f |g〉 =
∑

i

ωifigi = f†Ωg . (47)

We see how a metric appears naturally; it is given by the diagonal matrix Ω: Ωij = δijωi .
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• The operators that are local in real space are trivial to represent; they are just multiplicative

operators in the same way that they were for uniform grids.

• The differential operators (e.g. the kinetic operator) are the main problem. In principle, one can use

the transformation laws to relate the differential operators in the new grid to the usual well-known

finite-differences discretization expressions in the uniform space:

∇2 =
∑

ij

gij ∂

∂ξi

∂

∂ξj
+

∑

lik

∂ξl

∂xk

∂

∂ξl

(

∂ξi

∂xk

)

. (48)

This, however, involves a lot of computations, and in general does not provide a Hermitian operator.

Instead, we have used the following approach, valid for any grid, even unstructured ones:

– Select a stencil: given each point in the grid, the stencil is the set of neighboring points from

which we calculate the action of any differential operator D:

(D(f))i =
∑

j∈Stencil(i)

Ci
jfj . (49)

– Select a set of polynomials {xαyβzδ}, of equal number to the points in the stencil: the coeffi-

cients Ci
j are fixed by ensuring that the action of D on these polynomials is exact.

This amounts to solving a linear system of equations of order the size of the stencil for each

point of the grid. This operation must be performed at the beginning of the calculations, or

every time that the grid is redefined.

– The Laplacian operator is Hermitian; the gradient operator is anti-Hermitian. The resulting

numerical operator C, however, is not (anti) Hermitian. But it can be (anti) symmetrized by

transforming the matrix C in the following way:

C̃ =
1

2
(C ± W−1CW) . (50)

More details about the selection of the stencil and of the fitting polynomials may be consulted directly

in the code, and will be provided in a separate publication. Here we will finish this section by presenting

an example that shows the gain that is to be expected from the use of adaptive coordinates.

For that purpose we have chosen the “base” porphyrin molecule, depicted on the left hand side of Fig. 2.

We have then calculated its ground state total energy at the KS/LDA level, with varying grid spacing.

We plot, on the right hand side of Fig. 2, the resulting convergence study – a plot of the error in the total

energy as a function of the grid spacing.

We show two curves, one of them corresponds to the calculations with the standard uniform grid, and

one of them with adaptive coordinates. The meaning of the grid spacing in the latter case is ambiguous

(the spacing is no longer constant), and therefore we plot in the figure the original grid spacing, before

the transformation is performed. In this way, at each abscissa point the number of grid points of both

the uniform and the adaptive grid is the same.

In this case, we used Gygi’s transformation function, Eq. (43). The parameters are chosen in such a way

that the grid resolution is doubled in the vicinity of the nuclei. The plot shows a faster convergence for

the adaptive grid: The calculation can be done, with the same level of accuracy, by making use of roughly

half the number of points (it is the number of points in the grid that determines the final computational

cost).
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Figure 3: Parallelization modes for DFT/TDDFT codes.

5 Large-scale parallelization

The current trend in hardware technology follows a steep increase in the number of processors in each

computing machine or facility, as opposed to the trend towards an increase in the clock speed or number

of operations that each processing unit may perform per unit time. To use modern computing facilities

efficiently, we have to ensure that our codes are able to benefit from such parallel-computing architectures.

5.1 Parallelization strategies

Recently, we have incorporated into octopus a multiple-way parallelization scheme that may divide the

work among a given number of processors, splitting the tasks either in k-points, in Kohn-Sham states,

in regions of real-space, or in a combination of all of them. Each single form of the contemplated

parallelizations may scale by its very nature only to a certain maximum number of processors. Only

combined schemes allow to overcome such limitations.

In Fig. 3 we have represented the various possible modes for which a task division within a DFT/TDDFT

calculation may be obtained:

• k-points: In a ground-state DFT calculation each processor solves the KS equation

ĤKS
k

ϕnk(~r) = εnkϕnk(~r) (51)

for a given but fixed k-point. Communication among the nodes is only required for the calculation

of the (common) density or other Brillouin-zone integrations. This is the parallelization mode that

most ground-state solid-state DFT codes offer. The implementation is straightforward and scales

very nicely with the number of processors. However, limitations arise for systems with very large

unit cells.

• spin: The different spin subspaces may be treated by different processors. In practice this is rather

similar to the k-point parallelization, so that both spin and k-points are represented as common

quantum numbers and are treated on the same footing.

• Kohn-Sham states: For the ground-state a parallelization in state indices or bands is more involved

than the k-point parallelization. Essentially, the state indices have to be divided into different state-

groups. The eigenproblem is then solved for each group and a subsequent orthonormalization of the

states is performed among the states of different groups. Special block-diagonalization algorithms

are used for this task.

On the other hand, in time-dependent DFT the parallelization in state indices is straightforward.

Since the time-dependent Kohn-Sham equations constitute a N-fold initial value problem, each

orbital/state index may be propagated on a different processor. Communication is only required

for the calculation of the density and in some cases for the calculation of the current.

• real-space regions: The real-space mesh is divided into different domains, so that each processor

can treat a different portion of the total mesh. This is illustrated in the left of Fig. 4, where we
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Figure 4: Ghost points in a domain parallelization.

show a six-fold domain decomposition of a benzene molecule in the x-y plane. Apart from the

distribution of the computational burden over the different nodes, this parallelization strategy also

has the distinct advantage that the total memory requirement for the storage of the grid points is

distributed over the nodes. Much larger systems can be treated if domain parallelization is used.

The price one has to pay for this flexibility is the rather involved implementation which requires

non-trivial communication among the nodes. On the right hand side of Fig. 4 we show the appli-

cation of a finite-difference stencil of the Laplacian to a boundary point of Domain B. Due to the

non-local character of the stencil this requires points of Domain A (grey shaded area) which are held

in memory by a neighboring processor. These points are termed ghost points and need to be com-

municated among neighboring nodes every time the function values on the grid change. Low-latency

high-bandwidth networks are therefore the preferred interconnects for such an implementation.

• other: electron-hole pairs, scattering states, etc: The basis set in a linear response calculation

within time-dependent DFT consists of electron-hole pairs: products of occupied and unoccupied

Kohn-Sham states. Typically a large number of matrix elements in the form of Eq. (34) is required.

Since the different matrix elements are independent of each other, a parallelization may be easily

obtained by simply distributing their calculation over the different nodes.

The natural description of a quantum-mechanical transport calculation is in terms of scattering

states at given energies. Similar in spirit to the parallel treatment of Kohn-Sham states, the

propagation of these scattering states can be distributed over different nodes.

5.2 Technical aspects

For the implementation of the multiple-way parallelization in octopus we have employed version 1 of the

message passing standard MPI [56]. The choice was mainly motivated by the availability of this MPI

variant for virtually any computer architecture, and by the fact that MPI is the de facto standard on

large-scale parallel architectures. We did not make use of version 2 or newer developments in the MPI

standard since these features are still not available on many platforms. Parallelization techniques like

OpenMP have been ruled out from the start, since they are limited to shared memory architectures with

many processors in a single machine. The current Top500 list [57] contains only a few machines of this

kind.

Within octopus we allow for various different box shapes like spheres, cylinders or parallelepipeds in
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Figure 5: Measured speedups for a domain-parallel calculation of Cs8@C60.

3D, or disks and rectangles in 2D. With a recent addition to the code even arbitrary user-defined shapes

can be chosen. To treat the segmentation of the real space mesh for all possible geometries and spatial

dimensions on the same footing, we convert the sequence of mesh points into a structured graph. The

problem of decomposing the real-space mesh into different domains is then translated into a graph-

partitioning problem. Several graph algorithms are available for such tasks and we have chosen for

our implementation in octopus a “multilevel k-way partitioning algorithm” as provided by the METIS

library [58]. The library functions try to minimize the edge cuts while the graph partitioning is performed.

Translated back to the real-space mesh this means that the intersection area of neighboring domains is

minimized which in turn implies that fewer ghost points have to be communicated between the different

nodes. This effect can be seen nicely in the example of the benzene molecule (Fig. 4) where the domain

boundaries computed by METIS always lie between two carbon atoms, the optimal situation in this case.

5.3 Application to Cs8@C60

In Fig. 5 we show a sample calculation for 8 Cs atoms attached to C60. Because of the size of the Cs atoms

a rather large sphere with 26 Å diameter was used as enclosing computational domain. By choosing a

grid spacing of ∆=0.20Å a total number of 1.177.863 grid points were contained in the calculation box.

To asses the performance of the domain parallelization we have repeated the ground-state DFT calculation

of this system with a varying number of processors ranging from one to 32. On the right hand side of

Fig. 5 we plot the measured speedup as function of the number of processors. The circles correspond

to the timings obtained for the application of the Hamiltonian to the wavefunction and the diamonds

represent the measured timings for a full SCF cycle. Both curves follow Amdahl’s law [59]: Suppose that

p is the fraction of a calculation that can be performed in parallel. Then 1− p is the percentage which is

intrinsically serial. If we define the speedup S(N, p) of a parallel calculation as the ratio T (1, p)/T (N, p),

where T (N, p) is the execution time using N processors, we find

S(N, p) =
1

1 − p + p/N
. (52)

Note, that the speedup will always saturate to 1/(1−p) as function of the number of processors, if p < 1.

In Fig. 5 we have fitted our measured data to Amdahl’s law (solid lines) and obtain parallel fractions

p = 0.97 for the application of Ĥ to the wavefunction and p = 0.992 for the execution of a full SCF

cycle. Both fractions indicate that a high degree of parallelization has been achieved for the domain

parallelization in octopus. Nevertheless, since the saturation is very sensitive to the value of p there is
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still room for improvement in the future.

6 Periodic systems

DFT has been extensively applied to bulk systems, as much as it has been to clusters or molecules.

TDDFT for solids, however, has a smaller history [42]. We intend to provide a tool for DFT and

TDDFT on extended systems. In the definition of “extended systems,” however, we include systems of

intermediate dimensionality: systems that are periodic in one and two dimensions. These systems are still

3-dimensional (3D), but their quantum properties are those of a finite system in one or more directions,

and those of a periodic system in the remaining directions.

It is possible to implement periodic boundary conditions also in real space, but we have to take special care

of (i) the proper implementation of the the operators that are non-local in real space, and (ii) the correct

treatment of the long-range Coulomb interaction. Regarding the first issue, we must worry about the

differential operators (i.e., gradient and Laplacian), and the non-local components of the pseudopotentials.

In both cases, the action of the operator on a function for a given point may need the values of the function

at points that belong to a neighboring cell. The periodicity is thus enforced by identifying the “mirror”

points.

Regarding the second issue – the correct treatment of the long-range Coulomb interaction – it is convenient

to resort to a dual methodology, that allows to move back and forth from real to reciprocal space. In

particular, the integration of Poisson’s equation is more conveniently performed in Fourier space, but it

is easier to impose different boundary conditions in different directions in real space.

6.1 Implementation details for bulk systems

Most of the numerical machinery described in Section 2 for finite systems can be also be used for periodic

systems. In the following we will just review the main differences.

Kinetic term. For what concerns the kinetic part of the Hamiltonian, for periodic systems, we have

to modify the kinetic operator used for finite systems. The feature that remains common to both cases

is that, differently from what happens in plane waves codes, the kinetic energy is entirely calculated in

real space. We must however remember that only the periodic part unk(r + L) = unk(r) of the Bloch

states ψnk(r) = e−ik·runk(r) is used as the working quantity within the cell, and, accordingly, the kinetic

operator used for finite systems has to be modified in the following way:

T̂ = −1

2
∇2 → T̂k = −1

2
(∇2 + 2ik · ∇ − k2). (53)

External potential The total local part of the ionic potential of the infinite system is given by

vlocal(~r) =
∑

~n∈P

Na
∑

α

vlocal
α (|~r − ~dα − ~L~n|) . (54)

The inner sum runs over the Na atoms of the unit cell: the index α runs over the atoms in the unit cell,

and ~dα indicates the position of the α-th atom. We also use the notation
~̂
L~n to mean (nx

~Lx, ny
~Ly, nz

~Lz),

and the outer sum is just the sum over the set {P} of all the cells allowed by the Born-Von Kármán

periodic-boundary conditions.

Evaluation of this expression either in real space or in Fourier space leads to well known convergence

problems. The solution consists in splitting vlocal
α (~r) into a short range, and a long range part. The long

range tail of each atomic potential must behave asymptotically like Zα/r, where Zα is the number of
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valence electrons for the atom α, and the long range part can be chosen in such a way that its Fourier

transform is analytical, adopting a suitable representation. This representation is obviously not unique.

A convenient representation turns out to be the following:

vlocal
α (r) = ∆vα(r) − Zα

erf(ar)

r
, (55)

where a is chosen in such a way that ∆vα(r) is sufficiently localized within the cell, but is also well

approximated by its Fourier series when it is truncated to Ni points per each i direction.

The Fourier transform can be performed numerically on the localized part, and analytically on the long

range part

vlocal
α (G) = 4π

∫ R

0

dr r2 sin(Gr)

Gr
∆vα(r) − 4πZα

exp
(

−G2/4a2
)

G2
. (56)

Alternatively, the term ∆vα(r) can be directly handled in real space.

Hartree potential Let us now turn our attention to the Hartree part of the potential. The solution of

Poisson’s equation in real space can be achieved, for example, with a conjugated gradient minimization

method (see discussion in Section 2.2), but, for infinite systems, it is more convenient to transpose the

problem to Fourier space, where we can take advantage of the efficient Fast Fourier Transform, that scales

like N log(N) with the number of grid points N . Applying the convolution theorem, we can write Eq. (8)

in Fourier space as

vHartree(~G) = n(~G)w(G) , (57)

where v(G) is the Fourier transform of the Coulomb interaction

w(G) =
4π

G2
. (58)

The treatment of the singular point G = 0 is particularly simple in the case of bulk crystals, since v(G = 0)

corresponds to the average value of the potential, which is determined up to an arbitrary constant, and

it can set to 0 by observing that the overall charge neutrality of the unit cell imposes v(G = 0) = 0. Note

that, as the density is periodic, Eq. (57) needs to be evaluated only at the reciprocal primitive vectors
~G. The case of systems that are periodic in less than three dimensions is considered below.

6.2 Systems with reduced periodicity: the cutoff problem

In this sub-section we call nD-periodic a 3D system, that can be considered infinite and periodic in n

dimensions, being finite in the remaining 3 − n dimensions. In order to simulate this kind of systems, a

commonly adopted approach is the supercell approximation. In the supercell approximation the physical

system is treated as a fully 3D-periodic one, but a new unit cell (the supercell) is built in such a way

that some extra empty space separates the periodic replica along the direction(s) in which the system is

to be considered as finite.

This approach has several major drawbacks. For instance, it is well known that the response function of

an overall neutral solid of molecules is not equal, in general, to the response of the isolated molecule, and

converges very slowly to it, when the amount of vacuum in the supercell is progressively increased[42, 60].

Another problem arises when studying slabs, as a layered system (i.e., a supercell) is in fact equivalent to

an effective chain of capacitors. These issues become particularly evident in the approaches that involve

the calculation of non-local operators or response functions because, in these cases, two supercells may

effectively interact even if their charge densities do not overlap at all. Moreover, even in those cases

in which good convergence can be achieved, the supercell can be considerably larger than the system,

affecting the performance, and wasting computational resources.
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Some of the available methods used to avoid these problems have been mentioned in Sec. 2.2, but, with

special regard to the periodic case, and considering that the Fourier space method is still the fastest

available to solve the Poisson problem, some of us [61] have recently developed a new reciprocal space

analytical method to cutoff the long range interactions in supercell calculations, extending previous works

for finite systems [14]. This method has been implemented and tested in octopus.

Our goal is to transform the 3D-periodic Fourier representation of the Hartree potential

vHartree(~G) = n(~G)w(~G) , (59)

into the modified one

ṽHartree(~G) = ñ(~G)w̃(~G) , (60)

such that all the interactions among the undesired periodic replica of the system disappear. The present

method is a generalization of the method proposed by Jarvis and collaborators [62] for the case of a finite

system.

In order to build this representation, we want to: (i) define a screening region D around each charge

in the system, out of which there is no Coulomb interaction; (ii) calculate the Fourier transform of the

desired effective interaction w̃(r), that equals the Coulomb potential in D, and is 0 outside D

w̃(r) =







1
r

if r ∈ D
0 if r /∈ D

. (61)

Finally, we must (iii) modify the density n(~r) in such a way that the effective density is still 3D-periodic,

so that the convolution theorem can be still applied, but densities belonging to undesired images are not

close enough to interact through w̃(r).

The choice of the region D for step (i) is suggested by symmetry considerations. It is a sphere (or radius

R) for finite systems, an infinite cylinder (of radius R) for 1D-periodic systems, and an infinite slab (of

thickness 2R) for 2D-periodic systems.

Step (ii) means that we have to calculate the modified Fourier integral

w̃(~G) =

∫

d3r w̃(r)e−i~G·~r =

∫

D

d3r w(r)e−i~G·~r . (62)

Still, we have to avoid that two neighboring images interact by taking them far away enough from each

other. The cutoff functions are analytical in Fourier space except some particular sets of points (the

Gx = 0 plane in the 1D-periodic case, and the G‖ = 0 plane in the 2D-periodic case), for which a suitable

limiting procedure has to be followed in order to get finite results (explained in Ref.[61]). The results of

the integral (62) are the following

• 0D-periodic

w̃0D(G) =







4π
G2 [1 − cos(GR)] for G 6= 0

2πR2 for G = 0
(63)

• 1D-periodic (G⊥ =
√

G2
y + G2

z)

w̃1D(Gx, G⊥) =



























4π
G2

[

1 + G⊥RJ1(G⊥R)K0(|Gx|R) for Gx 6= 0

−|Gx|RJ0(G⊥R)K1(|Gx|R)
]

−4π
∫ R

0
dr rJ0(G⊥r) log(r) for Gx = 0 and G⊥ > 0

−πR2(2 log(R) − 1) for Gx = 0 and G⊥ = 0

(64)
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Figure 6: Calculated total and ionic and Hartree potentials for a 3D-periodic (left) and 1D-periodic (right) Si

chain.

• 2D-periodic (G‖ =
√

G2
x + G2

y)

w̃2D(G‖, Gz) =



















4π
G2

[

1 + e−G‖R
(

|Gz|
G‖

sin(|Gz|R) − cos(|Gz|R)
)]

for G‖ 6= 0

4π
G2

z

[1 − cos(|Gz|R) − GzR sin(|Gz|R)] for G‖ = 0 and Gz 6= 0

−2πR2 for G‖ = 0 and Gz = 0

(65)

A suitable supercell consists in increasing the cell in the non-periodic directions (in the 1D-periodic case

the supercell size is actually (1 +
√

2)L, and in the 0D-periodic it is (1 +
√

3)L), and setting to zero the

density in this extended area. Again, since the density naturally falls off to zero at the border of a finite

system, doubling the cell size in all periodic directions is sufficient.

Figure 6 illustrates the effect of the cutoff on the potentials. The left panel shows the ionic potential,

the Hartree potential, and their sum for a Si atom in a parallelepiped supercell with side lengths of 2.5,

11, and 11 a.u. respectively in the x, y and z directions. No cutoff is used here. The ionic potential is

roughly behaving like 1/r in the area not too close to the nucleus (where the pseudopotential takes over).

The total potential, on the other hand, falls off rapidly to an almost constant value at around 4 a.u. from

the nuclear position, by effect of the electron screening.

In the right panel of Fig. 6 the cutoff is applied to the all the potentials consistently. The radius of

the cylinder is R = 5.5 a.u. such that there is zero interaction among the replica of the system along

the y and z axes. The ionic potential now behaves like it is expected for a potential of a chain, i.e.

diverges logarithmically, and is clearly different from the latter case. Nevertheless, the sum of the ionic

and Hartree potential is basically the same as for the 3D-periodic system. In the static case the two

band structures are found to be the same, confirming that, as far as static calculations are concerned, the

supercell approximation is good, provided that the supercell is large enough. In static calculations, then,

the use of our cutoff only has the effect of allowing us to eventually use a smaller supercell, which provides

clear computational savings. In the case of the Si-chain a full 3D calculation would need a cell size of

38 a.u. whereas the cutoff calculation would give the same result with a cell size of 19 a.u. Of course,

when more delocalized states are considered, like higher energy unoccupied states, larger differences are

observed with respect to the supercell calculation.

In Fig. 7 a Na chain with lattice constant 7.5 a.u. is considered in a cell of 7.5x19x19 a.u., and the effect

of the cutoff on the occupied and unoccupied stated is shown. As expected, the occupied states are not

affected by the use of the cutoff, since the density of the system within the cutoff radius is unchanged,

and the corresponding band is the same as it is found for an ordinary 3D supercell calculation with the

same cell size. However there is a clear effect on the bands corresponding to unoccupied states, and the

effect is larger the higher the energy of the states. In fact, the high energy states, and the states in the
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Figure 7: Effect of the cutoff in a Na linear chain in a supercell size of 7.5x19x19 a.u. The bands obtained with

an ordinary supercell calculation with no cutoff (dashed line) are compared to the bands obtained applying the

1D cylindrical cutoff (solid line).

continuum are more delocalized, and therefore the effect of the boundary conditions is more sensible.

In summary, the proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor

to screen the bare Coulomb interaction. The functions are analytic everywhere but in a sub-domain of

the Fourier space that depends on the periodic dimensionality. In Ref. [61] we show that the divergences

that lead to the non-analytical behavior can be exactly canceled when both the ionic and the Hartree

potential are properly screened. This technique is exact, fast, and very easy to implement in already

existing supercell codes.

7 Conclusions

octopus was officially born on the 1st of January 2002. Since then, the code has grown at a steady pace,

both in the number of lines of code (that will soon reach the 50.000 lines of Fortran 90), and in the kind

of problems it is able to tackle. In this article we gave a brief overview on the code, mentioning some

of the algorithms used and their numerical implementation. Some of the most recent developments were

discussed in more detail, namely (i) the use of curvilinear coordinates, that can improve dramatically

the efficiency of the calculation; (ii) the multiple parallelization approach, that allows the code to scale

in some situations to several hundred processors; and (iii) the extension of the code to periodic systems.

Nevertheless, octopus is still, and will always be, a work in progress. In fact, our TODO list already

includes, among others, (i) the extension to all-electron calculations, either using the Projector Augmented

Wave technique, or by using specially crafted curvilinear transformations able to describe adequately the

core wave-functions; (ii) the possibility of performing fully-relativistic (i.e., Dirac-level) calculations;

(iii) the possibility of using hybrid exchange-correlation functionals; etc.

Note, however, that the code is not important per se, but due to the physics and chemistry we can

learn from it. We believe that octopus has already reached a high level of maturity when it comes to the

calculation of linear optical properties in nanostructures. In fact, we, and several other groups around the

world, routinely use octopus to study the optical spectra of large nanocrystallites, bio- chromophores,

and even aromatic molecules with astrophysical implications. octopus can also be efficiently used to

study the interaction of molecules with strong lasers, to calculate (hyper)polarizabilities, etc. However,

experimentalists have nowadays at their disposal numerous probes to study physical systems – infrared,

visible and ultra-violet light, X-ray radiation, magnetic fields, electron beams, etc. It would be certainly

helpful if a tool could describe consistently this whole plethora of spectroscopies. With octopus we are

still far from this objective, but by adding new features and by making the code more user friendly, we

expect to provide a code that is useful to a large scientific community.
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